## Exercise 97

Use the Chain Rule to show that if $\theta$ is measured in degrees, then

$$
\frac{d}{d \theta}(\sin \theta)=\frac{\pi}{180} \cos \theta
$$

(This gives one reason for the convention that radian measure is always used when dealing with trigonometric functions in calculus: the differentiation formulas would not be as simple if we used degree measure.)

## Solution

The argument of sine has to be a number here, not an angle; if $\theta$ is in degrees, it must be converted to radians before it can be manipulated with the tools of calculus. Differentiate the sine function using the chain rule.

$$
\begin{aligned}
\frac{d}{d \theta}(\sin \theta) & =\frac{d}{d \theta}\left(\sin \frac{\pi \theta}{180}\right) \\
& =\left(\cos \frac{\pi \theta}{180}\right) \cdot \frac{d}{d \theta}\left(\frac{\pi \theta}{180}\right) \\
& =\left(\cos \frac{\pi \theta}{180}\right) \cdot\left(\frac{\pi}{180}\right) \\
& =\frac{\pi}{180} \cos \frac{\pi \theta}{180} \\
& =\frac{\pi}{180} \cos \theta
\end{aligned}
$$

